+7 (929) 694-23-50
info-sollers@mail.ru
Теория компенсации реактивной мощности 
 

В электрических цепях протекающий ток синфазен (не опережает и не запаздывает) от напряжения, когда нагрузка имеет активный (резисторы) характер. Когда ток отстает от напряжения, нагрузка индуктивная (двигатели, трансформаторы на холостом ходу), когда ток опережает напряжение, нагрузка имеет емкостной характер (конденсаторы).

 

Суммарный ток, потребляемый двигателем, определяется векторной суммой 1. Iа - активный ток 2. Iри - реактивный ток индуктивного характера.

 

К этим токам привязаны мощности потребляемые двигателем. 1. Р – активная мощность привязана к Iа (по всем гармоникам суммарно) 2. Q – реактивная мощность привязана к Iри (по всем гармоникам суммарно) 3. A – полная мощность потребляемая двигателем. (по всем гармоникам суммарно)

Реактивная мощность не производит механической работы, хотя она и необходима для работы двигателя, поэтому ее необходимо получать на месте, чтобы не потреблять ее от энергоснабжающей организации. Тем самым мы снижаем нагрузку на провода и кабели, повышаем напряжение на клеммах двигателя, снижаем платежи за реактивную мощность, имеем возможность подключить дополнительные станки за счет снижения тока потребляемого с силового трансформатора.

Параметры определяющие потребление реактивной мощности называются POWER FACTOR или Cos (φ)

POWER FACTOR (PF) = P / A Cos (φ) = P1гарм / A1гарм P1гарм - активная мощность первой гармоники 50 Гц А 1гарм - полная мощность первой гармоники 50 Гц.

где, A = √P² + Q²

  

Таким образом, сos (φ) уменьшается, когда потребление реактивной мощности нагрузкой увеличивается. Необходимо стремиться к повышению сos (φ), т.к. низкий сos (φ) несет следующие проблемы:

1. Высокие потери мощности в электрических линиях (протекание тока реактивной мощности) 2. Высокие перепады напряжения в электрических линиях (например 330…370 В, вместо 380 В) 3. Необходимость увеличения габаритной мощности генераторов, сечения кабелей, мощности силовых трансформаторов.

Из всего вышеприведенного, понятно, что компенсация реактивной мощности необходима. Конденсаторы нужны чтобы скомпенсировать реактивную мощность двигателей.

Как компенсировать реактивную мощность?

Компенсация реактивной мощности производится путем подключения конденсаторных установок и конденсаторов. Подключая конденсаторы мы уменьшаем потребление реактивной мощности через силовые трансформаторы у энергоснабжающей организации и улучшаем сos (φ). Необходимо поддерживать сos (φ) = 0,9..0,95, для того, чтобы избежать платежей за потребление реактивной мощности, снизить нагрузку на кабели и трансформаторы, и в тоже время, застраховаться о перекомпенсации (работы с избыточным количеством конденсаторов), возможной при сos (φ)=0,97 и выше.

Более того, при повышении сos (φ) от 0,9 до 0,99 полный ток уменьшается всего на 3% а мощность конденсаторной установки необходимая для этого увеличивается в 2 раза, ее стоимость в 1,5 раза, что экономически нецелесообразно.

Компенсация реактивной мощности может быть ОБЩЕЙ (ЦЕНТРАЛИЗОВАНОЙ) и ИНДИВИДУАЛЬНОЙ.
Индивидуальная компенсация – компенсация реактивной мощности каждой нагрузки отдельно (например на клеммах двигателя).

  

Индивидуальная компенсация – это наиболее простое техническое решение. Конденсатор подбирается мо мощности и сos (φ) двигателя, поэтому реактивная мощность двигателя компенсируется постоянно в течение всего дня, сos (φ) достаточно высок. Дополнительное преимущество индивидуальной компенсации реактивной мощности, это то что затраты на нее невелики.

Общая (централизованная) компенсация – компенсация реактивной мощности с помощью одной конденсаторной установки устанавливаемой на КТП или в составе главного распределительного щита (ГРЩ).
  

Дневной тренд (характер изменения нагрузки), является основным фактором, влияющим на выбор наиболее подходящей схемы компенсации реактивной мощности. На многих предприятиях не все оборудование работает одновременно, многие станки задействованы всего несколько часов в день. Поэтому индивидуальная компенсация становится очень дорогим решением, при большом количестве оборудования и соответственно большом числе устанавливаемых конденсаторов. Большинство этих конденсаторов не будут задействованы долгий период времени. Индивидуальная компенсация наиболее эффективна, когда большая часть реактивной мощности генерируется небольшим числом нагрузок, потребляющих наибольшую мощность достаточно длительный период времени. Централизованная компенсация применяется там, где нагрузка флюктуирует (перемещается) между разными потребителями в течение дня. При этом потребление реактивной мощности в течение дня меняется, поэтому использование автоматических конденсаторных установок предпочтительнее, чем нерегулируемых.